ORACLE

Oracle Banking Digital
Experience

Taxonomy Configuration Guide
Release 19.1.0.0.0

Part No. F18558-01

May 2019

Taxonomy Configuration Guide

May 2019

Oracle Financial Services Software Limited
Oracle Park

Off Western Express Highway

Goregaon (East)

Mumbai, Maharashtra 400 063

India

Worldwide Inquiries:

Phone: +91 22 6718 3000

Fax:+91 22 6718 3001
www.oracle.com/financialservices/

Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective
owners.

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed
on the hardware, and/or documentation, delivered to U.S. Government end users are “commercial computer software” pursuant to
the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure,
modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the
hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or
intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use
this software or hardware in dangerous applications, then you shall be responsible to take all appropriate failsafe, backup,
redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and
are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not
use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish or display any part, in any
form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

This software or hardware and documentation may provide access to or information on content, products and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to
third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Taxonomy Configuration Guide

http://www.oracle.com/financialservices/

Table of Contents

O (] = Vo] = PSPPI P 4
00 R [1 (=T [0 =To [0o 1= g o = OO PP R PR 4
1.2 Documentation ACCESSIDIITYcocveiiiieeiiieie e 4
1.3 Yool (o @ = Lo LTS T o] o Yo o PSSP 4
1.4 SHTUCTUIE ...ttt ettt ettt e e e oottt e e e e oo e et e e e e e s e e s b e et et e e e s e e s b s e n e e e e e e e nnnnnne s 4
15 Related INFOrMAtIoN SOUICES.......ciuuiiiiiiiiii ettt sttt et e e e s anbb e e e s sanneeas 4

2. REVISION HISTOTY ettt ettt e ekt e e ekt e e e bt e e e e e nb et e e e sbn e e e e nbre e e e neee 5

T | 0 (oY [o] A o] o PP P TP PR R PPPPPN 6

4. Taxonomy Validation Table SIIUCTUIEcoiiiiiiii e 7

5. Taxonomy Validalion PrOCESS ..oociiii i 9

6. Data TYPe AefiNitioN oo ————————— 10

7. Categories of taxonomy Validators ..o 11

8. Hierarchy to define field validation...........ccooooi oo 12

L o q (=T g Yo [=To V= 11T = 1o] =P PP RPP PP RPP 13

10. Validators for COMPIEX A LYPE ..uuuueiiieiiiiiiiiieiiieieieieieieieieie e eere e rererereraeersesrerararnesrsrsrnenrnrnnes 14

11. Configurations for taxonomy Valid@ationocueiiiiiiiiiiiiie e 15

12. Key Things to note for Taxonomy Validation ... 16

13. BI=T 0] o] F= A= PRSP RR 17

14. Configuring Taxonomy Validation iN Ul.........cccoiiiiiiiii e 23

15. Utility to generate ValidAtOrSoiiiiiiiie ittt e et e e e bneeeeans 24

16. Manual to Create ValidAOTSocuuiii ittt e e st e e e st e e e sbaeeeeans 26

17. (€1 o 1=1=7- 1 PR PEPTR PP 31

Taxonomy Configuration Guide

1.2

1.3

1.4

1.5

Preface

Preface
Intended Audience

This document is intended for the following audience:
e Customers

e Partners

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program
website at http://www.oracle.com/pls/topic/lookup?ctx=accandid=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For information,
visit

http://www.oracle.com/pls/topic/lookup?ctx=accandid=info or visit

http://www.oracle.com/pls/topic/lookup?ctx=accandid=trs if you are hearing impaired.

Structure

This manual is organized into the following categories:

Preface gives information on the intended audience. It also describes the overall structure of the
User Manual.

The subsequent chapters describes following details:
e Purpose

e Configuration / Installation.

Related Information Sources

For more information on Oracle Banking Digital Experience Release 19.1.0.0.0, refer to the
following documents:

e Oracle Banking Digital Experience Installation Manuals

Taxonomy Configuration Guide

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

2. Revision History

Revision History

Name
Author Digital Experience Development team
Current Version 1
Date 01-Feb-2019

Taxonomy Configuration Guide

Introduction

Introduction

Taxonomy validation is used to validate each field of the request object for each service in OBDX
application. This validation pattern for each field can be defined in OBDX tables. The taxonomy
validation can be used for language specific validation of fields. This validation can be configured

at system as well as object level.

Taxonomy Configuration Guide

Taxonomy Validation Table structure

4. Taxonomy Validation Table structure

DIGX_FW_LOCALE_DATA_TYPE

This table holds the complete list of predefined data types in Out of the box OBDX application.
The default locale used to define data type is ‘en’. Separate entries for data types can be made
for required locales. All the taxonomy data is validated against these data types. The validation
pattern for specific data type is formed based on the column values of this table which is as

follows:

Column Name Type Description

ID VARCHARZ2(100) | Unique identifier of the data type

LOCALE VARCHAR2(3) Locale identifier for which validation pattern
is required

DESCRIPTION VARCHARZ2(255) | Description of the taxonomy

MINLENGTH NUMBER minimum length required for the field

MAXLENGTH NUMBER maximum length allowed for the field

PATTERN VARCHARZ2(255) | regex pattern required to be validated(if any)

ERRORCODE VARCHAR2(255) | the default error code if the pattern
validation fails

LENGTHERRORCODE | VARCHAR2(255) | error code thrown if length criteria fails

VALIDATION_CLASS VARCHARZ2(255) | Fully qualified name of the class that needs
to be invoked for the validation.

DIGX_FW_TAXONOMY_DATA_TYPE_MAP

This table is used to define taxonomy and map it to the desired data type. The taxonomy can be
defined at class level or field level in this table. The validation pattern for the taxonomy can be
defined using following columns.

Taxonomy Configuration Guide

Taxonomy Validation Table structure

Column name Type Description

ID VARCHAR2(255) | Unique identifier of the field to be
validated. This can be only field nhame,
field name in class hierarchy or
complex fields parameters

TYPE VARCHAR2(20) (FIELD/CLASS/COMPLEX)

DATATYPEID VARCHAR2(100) | Identifier of the Data Type to be
applied on taxonomy

MINLENGTH NUMBER minimum length required for the field

MAXLENGTH NUMBER maximum length allowed for the field

MANDATORY VARCHAR2(1) Is the field value mandatorily required

(Values - Y/N)

ERRORCODE VARCHAR2(255) | the default error code if the pattern
validation fails

LENGTHERROCODE VARCHARZ2(255) | error code thrown if length criteria fails

MANDATORYERRORCODE | VARCHAR2(255) | error code thrown if mandatory criteria
fails

Note: For all the fields which are common in both the tables, the field value in
'DIGX_FW_TAXONOMY_DATA_TYPE_MAP' will take the precedence.

Taxonomy Configuration Guide

Taxonomy Validation Process

5. Taxonomy Validation Process

Taxonomy validation is applicable for all the objects that extend Validatable class. All the private
member (excluding static) fields are validated using taxonomy validation. The member fields of
the class which also extends the Validatable class will be validated recursively. If there is a List of
the fields, all the values will be validated in loop.

The detailed validation process is as follows:

1. The taxonomy validation flow will be called as part of the traditional <DTO_Object>.validate
method call in the service class.

2. The taxonomy validation should be applied or not for the respective DTO object is configured
in preferences (Explained in ‘Configurations’ section)

3. Allthe classes in ‘xface’ and ‘appcore/dto’ package which extends Validatable class will have
their corresponding validator class loaded in the system in the same package. The validator
class name would be <DTO_NAME>Validator.java. (Note: these validator classes need not
be written by developers. These files will be generated at build time and loaded in
corresponding ear files)

4. All the member fields of the validatable object class will be validated against the
corresponding taxonomy data loaded.

5. If the validation fails for a particular field the corresponding error will be added to validation
error list. All the validation criteria will be applied to the field at once and all the possible
errors codes will collated together.

6. The ValidationError object will contain error code, error message, the fully qualified name of
the parent request DTO on which validate method is called and the fieldkey. The fieldkey is
the name of the field with its hierarchy w.r.t parent class.

7. If there is no validation data maintained for the field at class level or field level, an exception
will be raised.

8. The rest process of service execution will remain same.

Taxonomy Configuration Guide

Data Type definition

Data Type definition

All the out of box available data types will be listed in ‘DIGX_FW_LOCALE_DATA_TYPE' table
for default locale (‘en’).

If the data type needs to be redefined for a different locale (e.g. if pattern is required to be
changed for different locale for a data type), a specific entry needs to be inserted for that data
type for required data type.

If the validation pattern for a particular field is asked for a locale other than 'en' and corresponding
entry is available in DIGX_FW_LOCALE_DATA _TYPE table the same will be applied. Otherwise
by default validation pattern of ‘en’ will be used.

Perform following steps, if new data type is to be introduced for the taxonomy validation.

a.
b.

Make an entry in ' DIGX_FW_LOCALE_DATA_TYPE' for default locale (‘en’)

Define the validation definition using the columns available in the table (like minlength,
maxlength, pattern etc)

Provide required error codes and their corresponding entries in
'DIGX_FW_ERROR_MESSAGES'

Create a taxonomy validation class for the data type and provide its fully qualified name
in the respective column

The out of the box taxonomy validation class should reside in
‘projects\framework\com.ofss.digx.appcore.dto\src\com\ofss\digx\app\dto\validator\taxono
my'

Each taxonomy validation class must implement
‘com.ofss.digx.app.dto.validator.ITaxonomyValidator'. Use the overridden 'validate'
method to provide logic for validation. It should be defined as singleton class and provide
a ‘getinstance’ method for its loading. (Refer templates section for reference)

Also each taxonomy validation class must implement the ‘getCategory’ method. The
validator category can be ‘NUMBER’, ‘TEXT’, ‘DATE’ or ‘OTHER’

10

Taxonomy Configuration Guide

Categories of taxonomy validators

7. Categories of taxonomy validators

The taxonomy has been divided into 4 categories.

1.

2
3.
4

NUMBER
TEXT
DATE
OTHER

The validation of taxonomy based on length and pattern is done based on above 4 categories.
Each taxonomy validator has to define it category by implementing ‘getCategory()’ method.

Methodology to validate length based on category

For TEXT category the minLength and maxLength columns will refer to the actual length of
the string.

For NUMBER category the minLength and maxLength columns will refer to the minimum
and maximum allowed integer value for the input

For DATE category the minLength and maxLength columns will refer to the minimum offset
value (in number of days — positive or negative) from current date in which input date is
allowed.

For OTHER category length validation will not be performed.

11

Taxonomy Configuration Guide

Hierarchy to define field validation

8. Hierarchy to define field validation

The field can be defined for validation in one the following ways:

Level Description Entry in
DIGX_FW_TAXONOMY_DATA_MAP
ID TYPE
Field This level is used to validate the | Exact name (case-sensitive) | FIELD
Level taxonomy based on the name of | of the private member field

the field. It will be applicable to all | of the request DTO class.

the fleIQS W'th same name in the e.g. payeelD, fromDate,

application irrespective of its data name

type. This validation can be

overridden by a class level entry for

specific request DTO

Class This level is used to validate the | Fully hierarchical name of | CLASS
Level taxonomy based on the complete | the field.

hierarchical field name starting with eg

fully qualified name of the request | "

DTO. com.ofss.digx.app.dto.finlimi
t.TransactionalLimitDTO.ow
ner.value

Comple | This level is used to validate the | As defined in the complex | COMPLE
x Field | fields of complex data type data type validator class. X

Level

Note:

1. While defining the taxonomy in ‘DIGX_FW_TAXONOMY_DATA_MAP’, override the
parameters of ‘DIGX_FW_LOCALE_DATA_TYPE’ as per the requirement.

2. If the entry for the field already exists in ‘DIGX_FW_TAXONOMY_DATA_MAP’, do not modify
it for specific case. Instead make an entry of the field as per class hierarchy.

Taxonomy Configuration Guide

12

Extended validators

9. Extended validators

The default DTO validator classes can be extended using customized DTO validators. The
customized validator must implement IDTOValidator class. The validation logic should be
provided in overridden validate method. The default DTO validation logic can be used by
extending the default validator of the DTO class and calling super.validate() followed by
customized validation logic. The customized class name should be given in
‘DIGX_FW_CONFIG_ALL_B’ under category ‘ExtValidationConfig’'.

The extended validation class should contain a protected constructor and should use singleton
pattern with a ‘getinstance’ method to return the validator object. Refer the templates section for
sample extended validator.

13
Taxonomy Configuration Guide

Validators for complex data type

10. Validators for complex data type

The complex data type in OBDX can have specific validators. These validators are responsible
for validating the fields in the complex data type. The validation of the fields can also be
configured in ‘DIGX_FW_TAXONOMY_DATA_MAP’ (as per given in section 6). By using this, the
field validation can be kept configurable using database entries (refer template section for sample
code). The custom validation can also be written in validators specific to complex data type.

14
Taxonomy Configuration Guide

11.

Configurations for taxonomy Validation

Configurations for taxonomy Validation

Following are the day-O configuration properties related to taxonomy. All the properties are

maintained in ‘DIGX_FW_CONFIG_ALL_B’. For all properties default handling is for ‘false’.

PROP_ID

VALUE

CATEGORY_ID

DECSRIPTION

TAXONOMY_VALIDAT
ION_ENABLED

true/false

ValidationConfig

This property indicates
whether taxonomy validation
is required or annotation
based validation should be
applied.

CHECK_TAXONOMY_
WHITELIST

true/false

ValidationConfig

This property will be used if
taxonomy validation is
enabled. If this property is
true, the DTOs for which
taxonomy needs to be
enabled should be
configured.

If false, the DTOs for which
taxonomy validation is not
required should be
configured.

<Fully_qualified_name_
of _dto>.EnableTaxono
my

true/false

ValidationConfig

This property will be effective
for respective DTO if
‘CHECK_TAXONOMY_WHI
TELIST is true.

If this property is set to true,
taxonomy validation will be
applied to the DTO.
Otherwise it will follow
annotation based validation.

<Fully_qualified_name_
of_dto>.DisableTaxono
my

true/false

ValidationConfig

This property will be effective
for respective DTO if
‘CHECK_TAXONOMY_WHI
TELIST is false.

If this property is set to true,
annotation based validation
will be applied to the DTO.
Otherwise it will follow
taxonomy validation.

<Fully_qualified_name_
of dto>

<Fully_quali
fied_name_
of_extende
d_validator
>

ExtValidationCon
fig

This property is used to
specify the extended
validator class for a specific
DTO.

Taxonomy Configuration Guide

15

Key Things to note for Taxonomy Validation

12. Key Things to note for Taxonomy Validation

1.
2.

Taxonomy validation is applied to all non-static private fields.

The fields should have appropriate getter method.

a. For Boolean — the getter method should be ‘is<Fieldname>’ (e.g. isShared)
h. For other types — the getter should be ‘get<Fieldname>’ (e.g. getPartyld)

If any field in the DTO is of type of an object which extends Validatable Class, the
corresponding validator class will be responsible for its field validation.

For fields that do not require any specific data type validation, data type ‘FREETEXT’ can be
mapped.

For list type of fields the validation will be done in loop, validating each field as per taxonomy
definition.

In validationError, the structure of the error object is as follows-
{
"objectName": <fully qualified name of the DTO on which validate method is called>,
"attributeName": < the field in which the validation has failed>,
"errorCode": <error code>,
"errorMessage": <locale specific message for the errorCode>

}

For list of objects or fields the attribute name will have an index concatenated by ‘# in
attributeName.

16

Taxonomy Configuration Guide

Templates

13. Templates

L

Template to define Extended DTO validator
e DTO name: com.ofss.digx.app.test.TestDTO
e Default validator: com.ofss.digx.app.test. TestDTOValidator

e Extended DTO validator: com.ofss.cz.app.test.ExtTestDTOValidator
package com.ofss.cz.app.finlimit.dto.limitpackage;

import java.util.List;

import com.ofss.digx.app.dto.validator.IDTOValidator;
import com.ofss.fc.app.dto.validation.|Validatable;
import com.ofss.fc.infra.validation.error.ValidationError;

public class ExtTestDTOValidator extends com.ofss.digx.app.test. TestDTOValidator
implements IDTOValidator {

protected ExtTestDTOValidator() {
}

public static ExtTestDTOValidator getinstance() {
return ExtTestDTOValidatorHolder.INSTANCE;

private static class ExtTestDTOValidatorHolder {
private static final ExtTestDTOValidator INSTANCE = new ExtTestDTOValidator();

@Override
public void validatelnput(IValidatable validatable, String key, String parentName,
List<ValidationError> validationErrors) {
LOGGER.log(Level. SEVERE, FORMATTER.formatMessage(

"Class : %s, Entering into the customized class and calling digx class "
THIS_COMPONENT_NAME));

super.validatelnput(validatable, key, parentName, validationErrors);

17
Taxonomy Configuration Guide

Templates

/I Provide the required addiotion validation for the DTO. Add the required errors in
validationErrors for the failed cases.

}

2. Template to define taxonomy data type validator
Data Type: TESTTYPE
Validator: TestTypeValidator

package com.ofss.digx.app.dto.validator.taxonomy;

import java.util.List;

import com.ofss.digx.app.dto.validator.ITaxonomyValidator;
import com.ofss.digx.app.dto.validator.ValidationData;
import com.ofss.fc.infra.validation.error.ValidationError;

public class TestTypeValidator implements ITaxonomyValidator {

private TestTypeValidator() {
}
private static class TestTypeValidatorHolder {
private static final TestTypeValidator INSTANCE = new TestTypeValidator();

}
/**
* @return unique instance of {@link TestTypeValidator}
*/
public static TestTypeValidator getinstance() {
return TestTypeValidatorHolder.INSTANCE;
}
@Override
public void validate(ValidationData data, Object val, String parentName, String fieldKey,
List<ValidationError> validationErrors) {
if (val != null) {
if (val instanceof <Type of the object>) {
< Type of the object > value = (<Type of the object >) val,
if (<validation_case>) {
validationErrors.add(new ValidationError(parentName, fieldKey, null,
data.getErrorCode(), null));

}else {
validationErrors.add(new ValidationError(parentName, fieldKey, null,
"DIGX_INVALID_VALUE_TYPE", null));
}
}
}
}

18
Taxonomy Configuration Guide

Templates

3. Template to define validator for custom data type

package com.ofss.digx.app.dto.validator.taxonomy;

import java.util.List;

import java.util.logging.Level;
import java.util.logging.Logger;
import java.util.prefs.Preferences;

import com.ofss.digx.app.dto.validator.ITaxonomyValidator;
import com.ofss.digx.app.dto.validator. TaxonomyHandler;

import com.ofss.digx.app.dto.validator. TaxonomyValidatorFactory;
import com.ofss.digx.app.dto.validator.ValidationData;

import com.ofss.digx.enumeration.validator. TaxonomyCategory;
import com.ofss.fc.datatype.PostalAddress;

import com.ofss.fc.infra.config.ConfigurationFactory;

import com.ofss.fc.infra.log.impl.MultiEntityLogger;

import com.ofss.fc.infra.validation.error.ValidationError;

/**

* Validation class for complex type @AmountRange

*

public class PostalAddressValidator implements ITaxonomyValidator {

private static final String THIS_ COMPONENT_NAME =
PostalAddressValidator.class.getName();

private static final Logger LOGGER =
MultiEntityLogger.getUniguelnstance().getLogger(THIS_COMPONENT_NAME);

private static final MultiEntityLogger FORMATTER =
MultiEntityLogger.getUniquelnstance();

/**

* Constant to hold validation configuration preference name

*

private static final String VALIDATION_CONFIGURATION = "ValidationConfig";
/**

* Fully qualified name of the default length validator class

*/

private static final String LENGTH_VALIDATOR ="LENGTH_VALIDATOR";
/**

* Fully qualified name of the default length validator class

*

private static final String DEFAULT_LENGTH_VALIDATOR =
"com.ofss.digx.app.dto.validator.taxonomy.LengthValidator";

/**

* private Constructor
*/
private PostalAddressValidator() {

}

Taxonomy Configuration Guide

19

Templates

private static class PostalAddressValidatorHolder {
private static final PostalAddressValidator INSTANCE = new PostalAddressValidator();

}

/7\-*
* @return unique instance of {@link PostalAddressValidator}
*/
public static PostalAddressValidator getinstance() {
return PostalAddressValidatorHolder.INSTANCE;
}

/**
*
@Override
public void validate(ValidationData data, Object val, String parentName, String fieldKey,
List<ValidationError> validationErrors) {
if (LOGGER.isLoggable(Level.FINE)) {
LOGGER¢.log(Level.FINE, FORMATTER.formatMessage(
"Complex Data Type validation inside Class : %s, for Field : %s",
THIS_COMPONENT_NAME, fieldKey));

PostalAddress v = (PostalAddress) val;

validateField(TaxonomyHandler.getinstance().getValidationMap().get("POSTALADDRESS.li
nel." + data.getLocale()),
v.getLinel(), parentName, fieldKey + ".linel", validationErrors);

validateField(TaxonomyHandler.getinstance().getValidationMap().get("POSTALADDRESS.li
ne2." + data.getLocale()),
v.getLine2(), parentName, fieldKey + ".line2", validationErrors);

validateField(TaxonomyHandler.getinstance().getValidationMap().get("POSTALADDRESS.li
ne3." + data.getLocale()),
v.getLine3(), parentName, fieldKey + ".line3", validationErrors);

validateField(TaxonomyHandler.getinstance().getValidationMap().get("POSTALADDRESS.li
ne4." + data.getLocale()),
v.getLine4(), parentName, fieldKey + ".line4", validationErrors);

validateField(TaxonomyHandler.getinstance().getValidationMap().get("POSTALADDRESS.li
ne5." + data.getLocale()),
v.getLine5(), parentName, fieldKey + ".line5", validationErrors);

validateField(TaxonomyHandler.getinstance().getValidationMap().get("POSTALADDRESS.li
ne6." + data.getLocale()),
v.getLine6(), parentName, fieldKey + ".line6", validationErrors);

validateField(TaxonomyHandler.getinstance().getValidationMap().get("POSTALADDRESS.li
ne7." + data.getLocale()),
v.getLine7(), parentName, fieldKey + ".line7", validationErrors);

validateField(TaxonomyHandler.getinstance().getValidationMap().get("POSTALADDRESS.li
ne8." + data.getLocale()),

20
Taxonomy Configuration Guide

Templates

v.getLine8(), parentName, fieldKey + ".line8", validationErrors);

validateField(TaxonomyHandler.getinstance().getValidationMap().get("POSTALADDRESS.li
ne9." + data.getLocale()),
v.getLine9(), parentName, fieldKey + ".line9", validationErrors);

validateField(TaxonomyHandler.getinstance().getValidationMap().get("POSTALADDRESS.li
nel0." + data.getLocale()),
v.getLinel0(), parentName, fieldKey + ".line10", validationErrors);

validateField(TaxonomyHandler.getinstance().getValidationMap().get("POSTALADDRESS.li
nell." + data.getLocale()),
v.getLinell(), parentName, fieldKey + ".linell", validationErrors);

validateField(TaxonomyHandler.getinstance().getValidationMap().get("POSTALADDRESS.li
nel2." + data.getLocale()),
v.getLinel2(), parentName, fieldKey + ".line12", validationErrors);

validateField(TaxonomyHandler.getinstance().getValidationMap().get("POSTALADDRESS.c
ity." + data.getLocale()),
v.getCity(), parentName, fieldKey + ".city", validationErrors);

validateField(TaxonomyHandler.getinstance().getValidationMap().get("POSTALADDRESS.s
tate.” + data.getLocale()),
v.getState(), parentName, fieldKey + ".state", validationErrors);

validateField(TaxonomyHandler.getinstance().getValidationMap().get("POSTALADDRESS.c
ountry." + data.getLocale()),
v.getCountry(), parentName, fieldKey + ".country”, validationErrors);
validateField(

TaxonomyHandler.getinstance().getValidationMap().get("POSTALADDRESS.postalCode." +
data.getLocale()),
v.getPostalCode(), parentName, fieldKey + ".postalCode", validationErrors);

}

/**

* Validate individual field of the complex data type {@link PostalAddress}

*

* @param data

* @param value

* @param parentName

* @param key

* @param validationErrors

*/

private void validateField(ValidationData data, String value, String parentName, String
key,

List<ValidationError> validationErrors) {

Preferences validationFactoryConfigurator = ConfigurationFactory.getinstance()
.getConfigurations(VALIDATION_CONFIGURATION);

ITaxonomyValidator lengthValidator = TaxonomyValidatorFactory.getinstance()
.getValidator(validationFactoryConfigurator.get(LENGTH_VALIDATOR,
DEFAULT_LENGTH_VALIDATORY));

21
Taxonomy Configuration Guide

Templates

if (value == null) {
if (data.isMandatory()) {

validationErrors.add(new ValidationError(parentName, key, null,
data.getMandatoryErrorCode(), null));

}

}else {

if (data.getMinLength() != null || data.getMaxLength() != null) {
lengthValidator.validate(data, value, parentName, key, validationErrors);
}

ITaxonomyValidator validator =

TaxonomyValidatorFactory.getinstance().getValidator(data.getClassName());
if (validator != null) {

validator.validate(data, value, parentName, key, validationErrors);

}
}

}

@Override

public final TaxonomyCategory getCategory() {
return TaxonomyCategory.OTHER;

}

}

22
Taxonomy Configuration Guide

Configuring Taxonomy Validation in Ul

14. Configuring Taxonomy Validation in Ul

To integrate the taxonomy based validation in Ul components following steps are required for
migration from earlier Ul based validations.

View Model

Create taxonomyDefinition instance by calling getTaxonomyDefinition method from
dashboard.
It accepts the name of the DTO as the only argument.

A REST call to fetch taxonomy details will be performed for each invocation
of getTaxonomyDefinition.

self.taxonomyDefinition = rootParams.dashboard.getTaxonomyDefinition(

HTML

getTaxonomyValidator function accepts taxonomyDefinition created in the View Model as first
argument, and idField to search within taxonomyDefinition as second argument,
and element selector as the third argument.

<0j-input-text

</0j-input-text>

23
Taxonomy Configuration Guide

Utility to generate Validators

15. Utility to generate Validators

Once the taxonomy validation is enabled for a request DTO, it is mandatory to have a taxonomy
validator for the same in the application. A utility has been provided to generate the validators for
such request DTOs. This section describes the steps to be followed to generate the validators
using this utility.

Prerequisites:
1. The machine should have JDK version 1.7 or above installed
2. The project having the custom request DTOs must be ready
3. Supporting jars as mentioned below
a. com.ofss.digx.appcore.dto.jar — (available in ‘obdx.app.framework.ear’)
b. com.ofss.fc.infra.jar — (available in ‘obdx.app.core.domain.ear’)
c. com.ofss.fc.appcore.dto.jar — (available in ‘obdx.app.core.domain.ear’)
d. Any other jars required for compilation of project containing custom request DTOs
Running the Utility:
This section explains step by step process to generate the validators using the utility.

Step 1. Copy the following artifacts from the <installer> to desired directory. This directory will be
referred as <UTIL_DIR>.

1. validator_gen.bat (for Windows) OR validator_gen.sh (for Linux)
2. lib folder — (contains pre-built jars required for utility)

Add the supporting jars as mentioned in the prerequisites (point no 3) in the lib folder.

Step 2: Go to < UTIL_DIR > and open command prompt / terminal.
Execute following command:

a. For Linux
Jvalidator_gen.sh <BIN_DIR> <UTIL_DIR> <PROJECT_DIR> <PACKAGE_NAME>

b. For Windows
Jvalidator_gen.bat <BIN_DIR> <UTIL_DIR> <PROJECT_DIR> <PACKAGE_NAME>

Where,

<BIN_DIR>: Path where JDK bin is located (e.g. C:\Program Files\Java\jdk1.8.0_171\bin) (use “ if
the path contains spaces)

<PROJECT_DIR>: path where request DTO project is located
<PACKAGE_NAME>: name of the package where the source of request DTOs is located

Consider following example

If the customized request DTOs are located in
‘D:\workspaces\trunk\com.ofss.digx.cz.app.xface\src \com...’
Then, < PROJECT_DIR > = ‘D:\workspaces\trunk’ and < PACKAGE_NAME > =

‘com.ofss.digx.cz.app.xface’

24
Taxonomy Configuration Guide

Utility to generate Validators

Step 3: As a result of utility, a jar containing the compiled classes of validator files will be created
in <UTIL_DIR>. Copy the jar file and paste in the EAR file where the jar of customized DTO
classes is located. Deploy the EAR file in the application and restart the server.

Note:

As the utility runs, it creates the source folder of the validator classes in <PROJECT_DIR>. By
default, this folder is deleted once the utility execution is completed. This source folder can be
retained by following way.

Open ‘validator_gen.bat’ or ‘validator_gen.sh’ in notepad and set the value of variable
‘isValidatorSourceRequired’ to Y. Run the utility again. The source will available in
<PROJECT_DIR>.

25
Taxonomy Configuration Guide

Manual to create Validators

16. Manual to create Validators

If the utility to generate validator is not available, following steps can be referred to create the
request DTO validator manually. This can be created in the same workspace as that of request
DTO.

Project Creation for validators

1. Import the project containing customized DTO in eclipse workspace

J

L= com.ofss.dige.cz.appxface

B JRE System Library [Javase-1.z
v i src
w B4 com.ofss.dige.cz.app.card.dio
[J] CardDTO.java
[J] CreditCardDTO.java
[J] OfferDTO java
i com.ofss.digx.cz.app.inquiry.dto

=, Referenced Libraries

| T S PR U RN (P RIS

2. Create project in the workspace for valiadator classes. Name the project by appending
".validators’ to the name of project containing DTOs

L'j"' com.ofss.dige.cz.app.aface A

com.ofss.dige.cz.appafacevalidators
B\ JRE System Library [jdk1.2.0_171]
B sre

=L Referenced | ikraries

26
Taxonomy Configuration Guide

Manual to create Validators

3. Create the validator class for each of the DTO. Maintain the same package structure as that
of DTO project while creating the validator classes. To name the validator, use the DTO
name appended with prefix ‘Validator’.

v =2 com.ofss.digx.cz.appxface
B, JRE System Library [JavaSE-1.2]
w (B orc

~w ff com.ofss.digr.cz.app.card.dto
E] CardDTO java
[J] CreditCardDTO java
[J] OfferDTO java
w 7 com.ofss.digrcz.app.inquiry.dto
[J] InquiryDTO java
=, Referenced Libraries
v"iff- com.ofss.digx.cz.appafacevalidators

B\ JRE System Library [jdk1.2.0_171]

w i gt
r*: H com.ofss.digx.cz.app.card.dto
E] CardDTOValidator.java
1] CreditCardDTOValidator java
[J] OfferDTOValidator.java
w B com.ofss.dige.cz.app.inguiry.dto
[J] InquiryDTOValidator.java
=), Referenced Libraries

Validator file creation

Use following steps to create validator class:

In this document, we will use CardDTO, OfferDTO, CreditCardDTO as example to create
validators. CardDTO extends DataTransferObject and CreditCardDTO extends CardDTO.

For these DTOs, CardDTOValidator, OfferDTOValidator and CreditCardDTOValidator will be
created.

1. Each validator class must extend a parent DTO validator class.

If Request DTO extends DataTransferObject then the validator class should extend
‘com.ofss.digx.app.dto.validator.AbstractDTOValidator’.

E.g. public class CardDTOValidator extends AbstractDTOValidator implements IDTOValidator {

If request DTO extends another request DTO then the validator class should extends the
validator class of parent DTO.

E.g. public class CreditCardDTOValidator extends CardDTOValidator implements IDTOValidator
{

2. Each validator class must implement the interface
‘com.ofss.digx.app.dto.validator.IDTOValidator’

Each validator should be a singleton class and must contain ‘getlnstance’ method to return
validator class instance. The class can be made singleton by any method. One of the method is
given in following snippet.

27
Taxonomy Configuration Guide

Manual to create Validators

protected CreditCardDTOValidator() {
}

Jxk

* @return instance of {@link CreditCardDTOValidator}.

*

public static CreditCardDTOValidator getinstance() {
return CreditCardDTOValidatorHolder.INSTANCE;

Jxk
* The class holds the instance of {@link CreditCardDTOValidator}.
*/
private static class CreditCardDTOValidatorHolder {
Jx*
* private instance variable {@value new CreditCardDTOValidator()}.
*
private static final CreditCardDTOValidator INSTANCE = new CreditCardDTOValidator();

3. Validator class should override ‘validatelnput’ with signature as given below:
@Override
public void validatelnput(lVValidatable validatable, String key, String parentName,

List<ValidationError> validationErrors) {

4. In ‘validatelnput’ method: include following content in the beginning-
a.
String parent = parentName != null ? parentName : validatable.getClass().getName();
String fullKey = (key != null ? (key +".") : ™);

super.validatelnput(validatable, key, parent, validationErrors);

(The super.validatelnput validates the fields of parent class by calling parent validator’s
‘validatelnput’ method.

b. ‘validatable’ parameter of ‘validatelnput’ should be casted to DTO which we want to
validate. For example, in case of CardDTOValidator, CardDTO is to be validated.
Therefore, below code should be used for casting

28
Taxonomy Configuration Guide

Manual to create Validators

CardDTO cardDTO = (CardDTO) validatable;

c. Create a HashMap of String as key and Object as value as in below snippet

Map<String,Object> fieldsMap = new HashMap<String,Object>();

Add all fields of DTO in hashmap one by one.

‘fullKey’ appended with particular fieldname should be inserted as key of hashmap and
corresponding field as value of hashmap .

For eg in case of CardDTO below snippet should be added to CardValidator,
Map<String,Object> fieldsMap = new HashMap<String,Object>();
fieldsMap.put(fullKey + "id",cardDTO.getld());

fieldsMap.put(fullKey + "cvv",cardDTO.getCvv());

fieldsMap.put(fullKey + "active",cardDTO.isActive());

d. If some DTO have other DTO in its attribute, then to validate attribute level DTO,
corresponding DTOs validator should be called.

For e.g. CardDTO contains a field cardProductDTO of type CardProductDTO. So
CardValidator should have following snippet to validate field of type CardProductDTO.

if(cardDTO.getCardProductDTO() != null) {

DTOValidatorFactory.getinstance().getValidator(cardDTO.getCardProductDTO()).validat
elnput(cardDTO.getCardProductDTO(), fullkey + “cardProductDTO", parent,
validationErrors);

}
fieldsMap.put(fullKey + "cardProductDTO",cardDTO.getCardProductDTO());

e. If some DTO contains list of objects, include following snippet for its validation.
if(cardDTO.getOffers() != null && !'cardDTO.getOffers().isEmpty()) {
int dtoVarindex = 0O;
for(OfferDTO dtoVar : cardDTO.getOffers()) {

DTOValidatorFactory.getinstance().getValidator(dtoVar).validatelnput(dtoVar,
fullKey + "offers#" + dtoVarindex, parent, validationErrors);

dtoVarindex++;

}

}
fieldsMap.put(fullKey + "offers",cardDTO.getOffers());

f. Finally add following method to validate parameters.

29
Taxonomy Configuration Guide

Manual to create Validators

DefaultDTOValidator.validateParams (fieldsMap,parent,validationErrors
)i

30
Taxonomy Configuration Guide

Glossary

17. Glossary

Validatable Class com.ofss.fc.app.dto.validation.Validatable

xface Project —
‘core\middleware\projects\common\com.ofss.digx.app.xface’

appcore/dto Project —
‘core\middleware\projects\framework\com.ofss.digx.appcore.dto’

ValidationError com.ofss.fc.infra.validation.error.ValidationError

Class

31
Taxonomy Configuration Guide

