
Oracle Banking Digital 

Experience 
Taxonomy Configuration Guide  

Release 19.1.0.0.0 

 

 
Part No. F18558-01 

 

 

 
May 2019 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



Taxonomy Configuration Guide  
ii 

 

Taxonomy Configuration Guide  

May 2019 

 

Oracle Financial Services Software Limited   

Oracle Park 

Off Western Express Highway 

Goregaon (East) 

Mumbai, Maharashtra 400 063  

India 

Worldwide Inquiries: 

Phone:  +91 22 6718 3000 

Fax:+91 22 6718 3001 
www.oracle.com/financialservices/ 

Copyright © 2019, Oracle and/or its affiliates.  All rights reserved.  

 

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective 
owners. 

 
U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed 
on the hardware, and/or documentation, delivered to U.S. Government end users are “commercial computer software” pursuant to 
the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, 
modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the 
hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other 
rights are granted to the U.S. Government. 

 

This software or hardware is developed for general use in a variety of information management applications. It is not developed or 
intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use 
this software or hardware in dangerous applications, then you shall be responsible to take all appropriate failsafe, backup, 
redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages 
caused by use of this software or hardware in dangerous applications. 

 

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and 
are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not 
use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish or display any part, in any 
form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for 
interoperability, is prohibited. 

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, 
please report them to us in writing. 

 
This software or hardware and documentation may provide access to or information on content, products and services from third 
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to 
third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or 
damages incurred due to your access to or use of third-party content, products, or services. 

  

http://www.oracle.com/financialservices/


Taxonomy Configuration Guide  
iii 

 

Table of Contents 

 

1. Preface ................................................................................................................................................. 4 

1.1 Intended Audience ........................................................................................................................ 4 

1.2 Documentation Accessibility ......................................................................................................... 4 

1.3 Access to Oracle Support ............................................................................................................. 4 

1.4 Structure ........................................................................................................................................ 4 

1.5 Related Information Sources......................................................................................................... 4 

2. Revision History ................................................................................................................................. 5 

3. Introduction ......................................................................................................................................... 6 

4. Taxonomy Validation Table structure .............................................................................................. 7 

5. Taxonomy Validation Process .......................................................................................................... 9 

6. Data Type definition ......................................................................................................................... 10 

7. Categories of taxonomy validators ................................................................................................ 11 

8. Hierarchy to define field validation................................................................................................. 12 

9. Extended validators ......................................................................................................................... 13 

10. Validators for complex data type ................................................................................................ 14 

11. Configurations for taxonomy Validation .................................................................................... 15 

12. Key Things to note for Taxonomy Validation ............................................................................. 16 

13. Templates ....................................................................................................................................... 17 

14. Configuring Taxonomy Validation in UI ...................................................................................... 23 

15. Utility to generate Validators ....................................................................................................... 24 

16. Manual to create Validators ......................................................................................................... 26 

17. Glossary ......................................................................................................................................... 31 



Preface 

 

Taxonomy Configuration Guide  
 

4 

 

1. Preface  

1.1 Intended Audience 

This document is intended for the following audience: 

 Customers 

 Partners 

1.2 Documentation Accessibility 

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program 

website at http://www.oracle.com/pls/topic/lookup?ctx=accandid=docacc. 

1.3 Access to Oracle Support 

Oracle customers have access to electronic support through My Oracle Support. For information, 
visit  

http://www.oracle.com/pls/topic/lookup?ctx=accandid=info or visit 

http://www.oracle.com/pls/topic/lookup?ctx=accandid=trs if you are hearing impaired. 

1.4 Structure 

This manual is organized into the following categories: 

Preface gives information on the intended audience. It also describes the overall structure of the 
User Manual. 

The subsequent chapters describes following details: 

 Purpose 

 Configuration / Installation.  

 

1.5 Related Information Sources 

For more information on Oracle Banking Digital Experience Release 19.1.0.0.0, refer to the 
following documents: 

 Oracle Banking Digital Experience Installation Manuals 

 

 

 

 

 

    

 

 

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc


Revision History 

 

Taxonomy Configuration Guide  
 

5 

 

2. Revision History  

 Name 

Author Digital Experience Development team 

Current Version 1  

Date 01-Feb-2019 

 

 

  



Introduction 

 

Taxonomy Configuration Guide  
 

6 

 

3. Introduction 

Taxonomy validation is used to validate each field of the request object for each service in OBDX 
application. This validation pattern for each field can be defined in OBDX tables. The taxonomy 
validation can be used for language specific validation of fields. This validation can be configured 
at system as well as object level.  

  



Taxonomy Validation Table structure 

 

Taxonomy Configuration Guide  
 

7 

 

4. Taxonomy Validation Table structure 

 

DIGX_FW_LOCALE_DATA_TYPE 

This table holds the complete list of predefined data types in Out of the box OBDX application. 
The default locale used to define data type is ‘en’. Separate entries for data types can be made 
for required locales. All the taxonomy data is validated against these data types. The validation 
pattern for specific data type is formed based on the column values of this table which is as 
follows: 

 

Column Name Type Description 

ID VARCHAR2(100) Unique identifier of the data type 

LOCALE VARCHAR2(3) Locale identifier for which validation pattern 
is required 

DESCRIPTION VARCHAR2(255) Description of the taxonomy 

MINLENGTH NUMBER minimum length required for the field 

MAXLENGTH NUMBER maximum length allowed for the field 

PATTERN VARCHAR2(255) regex pattern required to be validated(if any) 

ERRORCODE VARCHAR2(255) the default error code if the pattern 
validation fails 

LENGTHERRORCODE VARCHAR2(255) error code thrown if length criteria fails 

VALIDATION_CLASS VARCHAR2(255) Fully qualified name of the class that needs 
to be invoked for the validation. 

 

DIGX_FW_TAXONOMY_DATA_TYPE_MAP 

This table is used to define taxonomy and map it to the desired data type. The taxonomy can be 
defined at class level or field level in this table. The validation pattern for the taxonomy can be 
defined using following columns. 

  



Taxonomy Validation Table structure 

 

Taxonomy Configuration Guide  
 

8 

 

 

Column name Type Description 

ID VARCHAR2(255) Unique identifier of the field to be 
validated. This can be only field name, 
field name in class hierarchy or 
complex fields parameters 

TYPE  VARCHAR2(20) (FIELD/CLASS/COMPLEX) 

DATATYPEID VARCHAR2(100) Identifier of the Data Type to be 
applied on taxonomy 

MINLENGTH NUMBER minimum length required for the field 

MAXLENGTH NUMBER maximum length allowed for the field 

MANDATORY VARCHAR2(1) Is  the field value mandatorily required 
(Values - Y/N) 

ERRORCODE VARCHAR2(255) the default error code if the pattern 
validation fails 

LENGTHERROCODE VARCHAR2(255) error code thrown if length criteria fails 

MANDATORYERRORCODE VARCHAR2(255) error code thrown if mandatory criteria 
fails 

 

Note: For all the fields which are common in both the tables, the field value in 
'DIGX_FW_TAXONOMY_DATA_TYPE_MAP' will take the precedence. 

  



Taxonomy Validation Process 

 

Taxonomy Configuration Guide  
 

9 

 

5. Taxonomy Validation Process 

 

Taxonomy validation is applicable for all the objects that extend Validatable class. All the private 
member (excluding static) fields are validated using taxonomy validation. The member fields of 
the class which also extends the Validatable class will be validated recursively. If there is a List of 
the fields, all the values will be validated in loop. 

The detailed validation process is as follows: 

1. The taxonomy validation flow will be called as part of the traditional <DTO_Object>.validate 
method call in the service class.  

2. The taxonomy validation should be applied or not for the respective DTO object is configured 
in preferences (Explained in ‘Configurations’ section) 

3. All the classes in ‘xface’ and ‘appcore/dto’ package which extends Validatable class will have 
their corresponding validator class loaded in the system in the same package. The validator 
class name would be <DTO_NAME>Validator.java. (Note: these validator classes need not 
be written by developers. These files will be generated at build time and loaded in 
corresponding ear files) 

4. All the member fields of the validatable object class will be validated against the 
corresponding taxonomy data loaded. 

5. If the validation fails for a particular field the corresponding error will be added to validation 
error list. All the validation criteria will be applied to the field at once and all the possible 
errors codes will collated together. 

6. The ValidationError object will contain error code, error message, the fully qualified name of 
the parent request DTO on which validate method is called and the fieldkey. The fieldkey is 
the name of the field with its hierarchy w.r.t parent class.  

7. If there is no validation data maintained for the field at class level or field level, an exception 
will be raised. 

8. The rest process of service execution will remain same. 

  



Data Type definition 

 

Taxonomy Configuration Guide  
 

10 

 

6. Data Type definition 

 

All the out of box available data types will be listed in ‘DIGX_FW_LOCALE_DATA_TYPE' table 
for default locale ('en'). 

If the data type needs to be redefined for a different locale (e.g. if pattern is required to be 
changed for different locale for a data type), a specific entry needs to be inserted for that data 
type for required data type. 

If the validation pattern for a particular field is asked for a locale other than 'en' and corresponding 
entry is available in DIGX_FW_LOCALE_DATA_TYPE table the same will be applied. Otherwise 
by default validation pattern of 'en' will be used. 

Perform following steps, if new data type is to be introduced for the taxonomy validation. 

a. Make an entry in ' DIGX_FW_LOCALE_DATA_TYPE' for default locale ('en') 

b. Define the validation definition using the columns available in the table (like minlength, 
maxlength, pattern etc) 

c. Provide required error codes and their corresponding entries in 
'DIGX_FW_ERROR_MESSAGES' 

d. Create a taxonomy validation class for the data type and provide its fully qualified name 
in the respective column 

e. The out of the box taxonomy validation class should reside in 
'projects\framework\com.ofss.digx.appcore.dto\src\com\ofss\digx\app\dto\validator\taxono
my'  

f. Each taxonomy validation class must implement 
'com.ofss.digx.app.dto.validator.ITaxonomyValidator'. Use the overridden 'validate' 
method to provide logic for validation. It should be defined as singleton class and provide 
a ‘getInstance’ method for its loading. (Refer templates section for reference) 

g. Also each taxonomy validation class must implement the ‘getCategory’ method.  The 
validator category can be ‘NUMBER’, ‘TEXT’, ‘DATE’ or ‘OTHER’ 

  



Categories of taxonomy validators 

 

Taxonomy Configuration Guide  
 

11 

 

7. Categories of taxonomy validators 

 

The taxonomy has been divided into 4 categories. 

1. NUMBER 

2. TEXT 

3. DATE 

4. OTHER 

 

The validation of taxonomy based on length and pattern is done based on above 4 categories. 
Each taxonomy validator has to define it category by implementing ‘getCategory()’ method. 

 

Methodology to validate length based on category 

 For TEXT category the minLength and maxLength columns will refer to the actual length of 
the string. 

 For NUMBER category the minLength and maxLength columns will refer to the minimum 
and maximum allowed integer value for the input 

 For DATE category the minLength and maxLength columns will refer to the minimum offset 
value (in number of days – positive or negative) from current date in which input date is 
allowed. 

 For OTHER category length validation will not be performed.  



Hierarchy to define field validation 

 

Taxonomy Configuration Guide  
 

12 

 

8. Hierarchy to define field validation 

 

The field can be defined for validation in one the following ways: 

Level Description Entry in 
DIGX_FW_TAXONOMY_DATA_MAP 

  ID TYPE 

Field 
Level 

This level is used to validate the 
taxonomy based on the name of 
the field. It will be applicable to all 
the fields with same name in the 
application irrespective of its data 
type. This validation can be 
overridden by a class level entry for 
specific request DTO 

Exact name (case-sensitive) 
of the private member field 
of the request DTO class. 

e.g. payeeID, fromDate, 
name  

FIELD 

Class 
Level 

This level is used to validate the 
taxonomy based on the complete 
hierarchical field name starting with 
fully qualified name of the request 
DTO. 

Fully hierarchical name of 
the field. 

e.g.  

com.ofss.digx.app.dto.finlimi
t.TransactionalLimitDTO.ow
ner.value 

CLASS 

Comple
x Field 
Level 

This level is used to validate the 
fields of complex data type 

As defined in the complex 
data type validator class. 

COMPLE
X 

 

Note:  
1.  While defining the taxonomy in ‘DIGX_FW_TAXONOMY_DATA_MAP’, override the 
parameters of ‘DIGX_FW_LOCALE_DATA_TYPE’ as per the requirement.  

2. If the entry for the field already exists in ‘DIGX_FW_TAXONOMY_DATA_MAP’, do not modify 
it for specific case. Instead make an entry of the field as per class hierarchy. 

  



Extended validators 

 

Taxonomy Configuration Guide  
 

13 

 

9. Extended validators  

 

The default DTO validator classes can be extended using customized DTO validators. The 
customized validator must implement IDTOValidator class. The validation logic should be 
provided in overridden validate method. The default DTO validation logic can be used by 
extending the default validator of the DTO class and calling super.validate() followed by 
customized validation logic. The customized class name should be given in 
‘DIGX_FW_CONFIG_ALL_B’ under category ‘ExtValidationConfig’. 

The extended validation class should contain a protected constructor and should use singleton 
pattern with a ‘getInstance’ method to return the validator object. Refer the templates section for 
sample extended validator. 

  



Validators for complex data type 

 

Taxonomy Configuration Guide  
 

14 

 

10. Validators for complex data type 

 

The complex data type in OBDX can have specific validators. These validators are responsible 
for validating the fields in the complex data type. The validation of the fields can also be 
configured in ‘DIGX_FW_TAXONOMY_DATA_MAP’ (as per given in section 6). By using this, the 
field validation can be kept configurable using database entries (refer template section for sample 
code). The custom validation can also be written in validators specific to complex data type.    



Configurations for taxonomy Validation 

 

Taxonomy Configuration Guide  
 

15 

 

11. Configurations for taxonomy Validation 

 

Following are the day-0 configuration properties related to taxonomy. All the properties are 
maintained in ‘DIGX_FW_CONFIG_ALL_B’.  For all properties default handling is for ‘false’. 

 

PROP_ID VALUE CATEGORY_ID DECSRIPTION 

TAXONOMY_VALIDAT
ION_ENABLED 

true/false ValidationConfig This property indicates 
whether taxonomy validation 
is required or annotation 
based validation should be 
applied. 

CHECK_TAXONOMY_
WHITELIST 

true/false ValidationConfig This property will be used if 
taxonomy validation is 
enabled. If this property is 
true, the DTOs for which 
taxonomy needs to be 
enabled should be 
configured. 

If false, the DTOs for which 
taxonomy validation is not 
required should be 
configured. 

<Fully_qualified_name_
of_dto>.EnableTaxono
my 

true/false ValidationConfig This property will be effective 
for respective DTO if 
‘CHECK_TAXONOMY_WHI
TELIST’ is true. 

If this property is set to true, 
taxonomy validation will be 
applied to the DTO. 
Otherwise it will follow 
annotation based validation.  

<Fully_qualified_name_
of_dto>.DisableTaxono
my 

true/false ValidationConfig This property will be effective 
for respective DTO if 
‘CHECK_TAXONOMY_WHI
TELIST’ is false. 

If this property is set to true, 
annotation based validation 
will be applied to the DTO. 
Otherwise it will follow 
taxonomy validation.  

<Fully_qualified_name_
of_dto> 

<Fully_quali
fied_name_
of_extende
d_validator
> 

ExtValidationCon
fig 

This property is used to 
specify the extended 
validator class for a specific 
DTO. 

 



Key Things to note for Taxonomy Validation 

 

Taxonomy Configuration Guide  
 

16 

 

12. Key Things to note for Taxonomy Validation 

1. Taxonomy validation is applied to all non-static private fields. 

2. The fields should have appropriate getter method. 

a. For Boolean – the getter method should be ‘is<Fieldname>’ (e.g. isShared) 

h. For other types – the getter should be ‘get<Fieldname>’ (e.g. getPartyId) 

3. If any field in the DTO is of type of an object which extends Validatable Class, the 
corresponding validator class will be responsible for its field validation. 

4. For fields that do not require any specific data type validation, data type ‘FREETEXT’ can be 
mapped. 

5. For list type of fields the validation will be done in loop, validating each field as per taxonomy 
definition. 

6. In validationError, the structure of the error object is as follows-  

{ 

"objectName": <fully qualified name of the DTO on which validate method is called>, 

"attributeName": < the field in which the validation has failed>, 

"errorCode": <error code>, 

"errorMessage": <locale specific message for the errorCode> 

} 

For list of objects or fields the attribute name will have an index concatenated by ‘#’ in 
attributeName.  



Templates 

 

Taxonomy Configuration Guide  
 

17 

 

13. Templates 

 

1. Template to define Extended DTO validator 

 DTO name: com.ofss.digx.app.test.TestDTO 

 Default validator: com.ofss.digx.app.test.TestDTOValidator 

 Extended DTO validator: com.ofss.cz.app.test.ExtTestDTOValidator 

package com.ofss.cz.app.finlimit.dto.limitpackage; 

 

import java.util.List; 

 

import com.ofss.digx.app.dto.validator.IDTOValidator; 

import com.ofss.fc.app.dto.validation.IValidatable; 

import com.ofss.fc.infra.validation.error.ValidationError; 

 

public class ExtTestDTOValidator extends com.ofss.digx.app.test.TestDTOValidator 

        implements IDTOValidator { 

 

     

    protected ExtTestDTOValidator() { 

    } 

 

    public static ExtTestDTOValidator getInstance() { 

        return ExtTestDTOValidatorHolder.INSTANCE; 

    } 

     

    private static class ExtTestDTOValidatorHolder { 

        private static final ExtTestDTOValidator INSTANCE = new ExtTestDTOValidator(); 

    } 

 

    @Override 

    public void validateInput(IValidatable validatable, String key, String parentName, 

            List<ValidationError> validationErrors) { 

        LOGGER.log(Level.SEVERE, FORMATTER.formatMessage( 

                "Class : %s, Entering into the customized class and calling digx class ", 
THIS_COMPONENT_NAME)); 

        super.validateInput(validatable, key, parentName, validationErrors); 

         



Templates 

 

Taxonomy Configuration Guide  
 

18 

 

        // Provide the required addiotion validation for the DTO. Add the required errors in 
validationErrors for the failed cases. 

    } 

}  

 
 

2. Template to define taxonomy data type validator 

Data Type: TESTTYPE 

Validator: TestTypeValidator 

 
package com.ofss.digx.app.dto.validator.taxonomy; 
 
import java.util.List; 
import com.ofss.digx.app.dto.validator.ITaxonomyValidator; 
import com.ofss.digx.app.dto.validator.ValidationData; 
import com.ofss.fc.infra.validation.error.ValidationError; 
 
public class TestTypeValidator implements ITaxonomyValidator { 
 
    private TestTypeValidator() { 
    } 
    private static class TestTypeValidatorHolder { 
        private static final TestTypeValidator INSTANCE = new TestTypeValidator(); 
    } 
    /** 
     * @return unique instance of {@link TestTypeValidator} 
     */ 
    public static TestTypeValidator getInstance() { 
        return TestTypeValidatorHolder.INSTANCE; 
    } 
    @Override 
    public void validate(ValidationData data, Object val, String parentName, String fieldKey, 
            List<ValidationError> validationErrors) { 
        if (val != null) { 
            if (val instanceof <Type of the object>) { 
                < Type of the object > value = (<Type of the object >) val; 
                if (<validation_case>) { 
                    validationErrors.add(new ValidationError(parentName, fieldKey, null, 
data.getErrorCode(), null)); 
                } 
            } else { 
                validationErrors.add(new ValidationError(parentName, fieldKey, null, 
"DIGX_INVALID_VALUE_TYPE", null)); 
            } 
        } 
    } 
} 
 

  



Templates 

 

Taxonomy Configuration Guide  
 

19 

 

 

3. Template to define validator for custom data type 

package com.ofss.digx.app.dto.validator.taxonomy; 
 
import java.util.List; 
import java.util.logging.Level; 
import java.util.logging.Logger; 
import java.util.prefs.Preferences; 
 
import com.ofss.digx.app.dto.validator.ITaxonomyValidator; 
import com.ofss.digx.app.dto.validator.TaxonomyHandler; 
import com.ofss.digx.app.dto.validator.TaxonomyValidatorFactory; 
import com.ofss.digx.app.dto.validator.ValidationData; 
import com.ofss.digx.enumeration.validator.TaxonomyCategory; 
import com.ofss.fc.datatype.PostalAddress; 
import com.ofss.fc.infra.config.ConfigurationFactory; 
import com.ofss.fc.infra.log.impl.MultiEntityLogger; 
import com.ofss.fc.infra.validation.error.ValidationError; 
 
/** 
 * Validation class for complex type @AmountRange 
 */ 
public class PostalAddressValidator implements ITaxonomyValidator { 
 
    private static final String THIS_COMPONENT_NAME = 
PostalAddressValidator.class.getName(); 
 
    private static final Logger LOGGER = 
MultiEntityLogger.getUniqueInstance().getLogger(THIS_COMPONENT_NAME); 
 
    private static final MultiEntityLogger FORMATTER = 
MultiEntityLogger.getUniqueInstance(); 
 
    /** 
     * Constant to hold validation configuration preference name 
     */ 
    private static final String VALIDATION_CONFIGURATION = "ValidationConfig"; 
 
    /** 
     * Fully qualified name of the default length validator class 
     */ 
    private static final String LENGTH_VALIDATOR = "LENGTH_VALIDATOR"; 
 
    /** 
     * Fully qualified name of the default length validator class 
     */ 
    private static final String DEFAULT_LENGTH_VALIDATOR = 
"com.ofss.digx.app.dto.validator.taxonomy.LengthValidator"; 
 
    /** 
     * private Constructor 
     */ 
    private PostalAddressValidator() { 
 
    } 



Templates 

 

Taxonomy Configuration Guide  
 

20 

 

 
    private static class PostalAddressValidatorHolder { 
        private static final PostalAddressValidator INSTANCE = new PostalAddressValidator(); 
    } 
 
    /** 
     * @return unique instance of {@link PostalAddressValidator} 
     */ 
    public static PostalAddressValidator getInstance() { 
        return PostalAddressValidatorHolder.INSTANCE; 
    } 
 
    /** 
     *  
     */ 
    @Override 
    public void validate(ValidationData data, Object val, String parentName, String fieldKey, 
            List<ValidationError> validationErrors) { 
        if (LOGGER.isLoggable(Level.FINE)) { 
            LOGGER.log(Level.FINE, FORMATTER.formatMessage( 
                    "Complex Data Type validation inside Class : %s, for Field : %s", 
THIS_COMPONENT_NAME, fieldKey)); 
        } 
        PostalAddress v = (PostalAddress) val; 
 
        
validateField(TaxonomyHandler.getInstance().getValidationMap().get("POSTALADDRESS.li
ne1." + data.getLocale()), 
                v.getLine1(), parentName, fieldKey + ".line1", validationErrors); 
        
validateField(TaxonomyHandler.getInstance().getValidationMap().get("POSTALADDRESS.li
ne2." + data.getLocale()), 
                v.getLine2(), parentName, fieldKey + ".line2", validationErrors); 
        
validateField(TaxonomyHandler.getInstance().getValidationMap().get("POSTALADDRESS.li
ne3." + data.getLocale()), 
                v.getLine3(), parentName, fieldKey + ".line3", validationErrors); 
        
validateField(TaxonomyHandler.getInstance().getValidationMap().get("POSTALADDRESS.li
ne4." + data.getLocale()), 
                v.getLine4(), parentName, fieldKey + ".line4", validationErrors); 
        
validateField(TaxonomyHandler.getInstance().getValidationMap().get("POSTALADDRESS.li
ne5." + data.getLocale()), 
                v.getLine5(), parentName, fieldKey + ".line5", validationErrors); 
        
validateField(TaxonomyHandler.getInstance().getValidationMap().get("POSTALADDRESS.li
ne6." + data.getLocale()), 
                v.getLine6(), parentName, fieldKey + ".line6", validationErrors); 
        
validateField(TaxonomyHandler.getInstance().getValidationMap().get("POSTALADDRESS.li
ne7." + data.getLocale()), 
                v.getLine7(), parentName, fieldKey + ".line7", validationErrors); 
        
validateField(TaxonomyHandler.getInstance().getValidationMap().get("POSTALADDRESS.li
ne8." + data.getLocale()), 



Templates 

 

Taxonomy Configuration Guide  
 

21 

 

                v.getLine8(), parentName, fieldKey + ".line8", validationErrors); 
        
validateField(TaxonomyHandler.getInstance().getValidationMap().get("POSTALADDRESS.li
ne9." + data.getLocale()), 
                v.getLine9(), parentName, fieldKey + ".line9", validationErrors); 
        
validateField(TaxonomyHandler.getInstance().getValidationMap().get("POSTALADDRESS.li
ne10." + data.getLocale()), 
                v.getLine10(), parentName, fieldKey + ".line10", validationErrors); 
        
validateField(TaxonomyHandler.getInstance().getValidationMap().get("POSTALADDRESS.li
ne11." + data.getLocale()), 
                v.getLine11(), parentName, fieldKey + ".line11", validationErrors); 
        
validateField(TaxonomyHandler.getInstance().getValidationMap().get("POSTALADDRESS.li
ne12." + data.getLocale()), 
                v.getLine12(), parentName, fieldKey + ".line12", validationErrors); 
        
validateField(TaxonomyHandler.getInstance().getValidationMap().get("POSTALADDRESS.c
ity." + data.getLocale()), 
                v.getCity(), parentName, fieldKey + ".city", validationErrors); 
        
validateField(TaxonomyHandler.getInstance().getValidationMap().get("POSTALADDRESS.s
tate." + data.getLocale()), 
                v.getState(), parentName, fieldKey + ".state", validationErrors); 
        
validateField(TaxonomyHandler.getInstance().getValidationMap().get("POSTALADDRESS.c
ountry." + data.getLocale()), 
                v.getCountry(), parentName, fieldKey + ".country", validationErrors); 
        validateField( 
                
TaxonomyHandler.getInstance().getValidationMap().get("POSTALADDRESS.postalCode." + 
data.getLocale()), 
                v.getPostalCode(), parentName, fieldKey + ".postalCode", validationErrors); 
 
    } 
 
    /** 
     * Validate individual field of the complex data type {@link PostalAddress} 
     *  
     * @param data 
     * @param value 
     * @param parentName 
     * @param key 
     * @param validationErrors 
     */ 
    private void validateField(ValidationData data, String value, String parentName, String 
key, 
            List<ValidationError> validationErrors) { 
 
        Preferences validationFactoryConfigurator = ConfigurationFactory.getInstance() 
                .getConfigurations(VALIDATION_CONFIGURATION); 
 
        ITaxonomyValidator lengthValidator = TaxonomyValidatorFactory.getInstance() 
                .getValidator(validationFactoryConfigurator.get(LENGTH_VALIDATOR, 
DEFAULT_LENGTH_VALIDATOR)); 



Templates 

 

Taxonomy Configuration Guide  
 

22 

 

        if (value == null) { 
            if (data.isMandatory()) { 
                validationErrors.add(new ValidationError(parentName, key, null, 
data.getMandatoryErrorCode(), null)); 
            } 
        } else { 
            if (data.getMinLength() != null || data.getMaxLength() != null) { 
                lengthValidator.validate(data, value, parentName, key, validationErrors); 
            } 
 
            ITaxonomyValidator validator = 
TaxonomyValidatorFactory.getInstance().getValidator(data.getClassName()); 
            if (validator != null) { 
                validator.validate(data, value, parentName, key, validationErrors); 
            } 
        } 
 
    } 
 
    @Override 
    public final TaxonomyCategory getCategory() { 
        return TaxonomyCategory.OTHER; 
    } 
}  



Configuring Taxonomy Validation in UI 

 

Taxonomy Configuration Guide  
 

23 

 

14. Configuring Taxonomy Validation in UI 

 

To integrate the taxonomy based validation in UI components following steps are required for 
migration from earlier UI based validations. 

 

View Model 

 

Create taxonomyDefinition instance by calling getTaxonomyDefinition method from 

dashboard. 
It accepts the name of the DTO as the only argument. 
 
A REST call to fetch taxonomy details will be performed for each invocation 

of getTaxonomyDefinition. 

 

 

 

 

HTML 

getTaxonomyValidator function accepts taxonomyDefinition created in the View Model as first 
argument, and idField to search within taxonomyDefinition as second argument, 
and element selector as the third argument.  

 

 

  



Utility to generate Validators 

 

Taxonomy Configuration Guide  
 

24 

 

15. Utility to generate Validators 

 

Once the taxonomy validation is enabled for a request DTO, it is mandatory to have a taxonomy 
validator for the same in the application. A utility has been provided to generate the validators for 
such request DTOs. This section describes the steps to be followed to generate the validators 
using this utility. 

Prerequisites: 

1. The machine should have JDK version 1.7 or above installed 

2. The project having the custom request DTOs must be ready 

3. Supporting jars as mentioned below 

a. com.ofss.digx.appcore.dto.jar – (available in ‘obdx.app.framework.ear’) 

b. com.ofss.fc.infra.jar – (available in ‘obdx.app.core.domain.ear’) 

c. com.ofss.fc.appcore.dto.jar – (available in ‘obdx.app.core.domain.ear’) 

d. Any other jars required for compilation of project containing custom request DTOs 

Running the Utility: 

This section explains step by step process to generate the validators using the utility. 

Step 1: Copy the following artifacts from the <installer> to desired directory. This directory will be 
referred as <UTIL_DIR>. 

1. validator_gen.bat (for Windows) OR validator_gen.sh (for Linux) 

2. lib folder – (contains pre-built jars required for utility) 

Add the supporting jars as mentioned in the prerequisites (point no 3) in the lib folder. 

Step 2: Go to < UTIL_DIR > and open command prompt / terminal. 

Execute following command: 

a. For Linux 
./validator_gen.sh <BIN_DIR> <UTIL_DIR> <PROJECT_DIR> <PACKAGE_NAME> 

b. For Windows 
./validator_gen.bat <BIN_DIR> <UTIL_DIR> <PROJECT_DIR> <PACKAGE_NAME> 

Where, 

<BIN_DIR>: Path where JDK bin is located (e.g. C:\Program Files\Java\jdk1.8.0_171\bin) (use “ if 
the path contains spaces) 

<PROJECT_DIR>: path where request DTO project is located 

<PACKAGE_NAME>: name of the package where the source of request DTOs is located 

Consider following example 

If the customized request DTOs are located in 
‘D:\workspaces\trunk\com.ofss.digx.cz.app.xface\src \com…’ 

Then, < PROJECT_DIR > = ‘D:\workspaces\trunk’ and < PACKAGE_NAME > = 
‘com.ofss.digx.cz.app.xface’ 

 



Utility to generate Validators 

 

Taxonomy Configuration Guide  
 

25 

 

Step 3: As a result of utility, a jar containing the compiled classes of validator files will be created 
in <UTIL_DIR>. Copy the jar file and paste in the EAR file where the jar of customized DTO 
classes is located. Deploy the EAR file in the application and restart the server. 

Note: 
As the utility runs, it creates the source folder of the validator classes in <PROJECT_DIR>. By 
default, this folder is deleted once the utility execution is completed. This source folder can be 
retained by following way. 

Open ‘validator_gen.bat’ or ‘validator_gen.sh’ in notepad and set the value of variable 
‘isValidatorSourceRequired’ to Y. Run the utility again. The source will available in 
<PROJECT_DIR>. 

  



Manual to create Validators 

 

Taxonomy Configuration Guide  
 

26 

 

16. Manual to create Validators 

 

If the utility to generate validator is not available, following steps can be referred to create the 
request DTO validator manually. This can be created in the same workspace as that of request 
DTO. 

 

Project Creation for validators 

1. Import the project containing customized DTO in eclipse workspace 

 

2. Create project in the workspace for valiadator classes. Name the project by appending 
’.validators’ to the name of project containing DTOs 

  

  



Manual to create Validators 

 

Taxonomy Configuration Guide  
 

27 

 

3. Create the validator class for each of the DTO. Maintain the same package structure as that 
of DTO project while creating the validator classes. To name the validator, use the DTO 
name appended with prefix ‘Validator’. 

 

 

Validator file creation 

 

Use following steps to create validator class: 

In this document, we will use CardDTO, OfferDTO, CreditCardDTO as example to create 
validators. CardDTO extends DataTransferObject and CreditCardDTO extends CardDTO. 

For these DTOs, CardDTOValidator, OfferDTOValidator and CreditCardDTOValidator will be 
created. 

1. Each validator class must extend a parent DTO validator class.  

If Request DTO extends DataTransferObject then the validator class should extend 
‘com.ofss.digx.app.dto.validator.AbstractDTOValidator’.  

E.g. public class CardDTOValidator extends AbstractDTOValidator implements IDTOValidator { 

If request DTO extends another request DTO then the validator class should extends the 
validator class of parent DTO.   

E.g. public class CreditCardDTOValidator extends CardDTOValidator implements IDTOValidator 
{ 

2. Each validator class must implement the interface 
‘com.ofss.digx.app.dto.validator.IDTOValidator’  

Each validator should be a singleton class and must contain ‘getInstance’ method to return 
validator class instance. The class can be made singleton by any method. One of the method is 
given in following snippet. 



Manual to create Validators 

 

Taxonomy Configuration Guide  
 

28 

 

 

protected CreditCardDTOValidator() { 

} 

 

/** 

 * @return instance of {@link CreditCardDTOValidator}. 

 */ 

public static CreditCardDTOValidator getInstance() { 

    return CreditCardDTOValidatorHolder.INSTANCE; 

} 

 

/** 

 * The class holds the instance of {@link CreditCardDTOValidator}. 

 */ 

private static class CreditCardDTOValidatorHolder { 

    /** 

     * private instance variable {@value new CreditCardDTOValidator()}. 

     */ 

    private static final CreditCardDTOValidator INSTANCE = new CreditCardDTOValidator(); 

} 

 

3. Validator class should override ‘validateInput’ with signature as given below: 

@Override 

    public void validateInput(IValidatable validatable, String key, String parentName, 

            List<ValidationError> validationErrors) { 

 
 

4. In ‘validateInput’ method: include following content in the beginning- 

a.  

String parent = parentName != null ? parentName : validatable.getClass().getName(); 

String fullKey = (key != null ? (key + ".") : ""); 

super.validateInput(validatable, key, parent, validationErrors); 

 

(The super.validateInput validates the fields of parent class by calling parent validator’s 
‘validateInput’ method. 

b. ‘validatable’ parameter of ‘validateInput’ should be casted to DTO which we want to 
validate. For example, in case of CardDTOValidator, CardDTO is to be validated. 
Therefore, below code should be used for casting 



Manual to create Validators 

 

Taxonomy Configuration Guide  
 

29 

 

CardDTO cardDTO = (CardDTO) validatable; 

 

c. Create a HashMap  of String as key and Object as value as in below snippet 

Map<String,Object> fieldsMap = new HashMap<String,Object>(); 
 

Add all fields of DTO in hashmap one by one. 

‘fullKey’ appended with particular fieldname should be inserted as key of hashmap and 
corresponding field as value of hashmap . 

For eg in case of CardDTO below snippet should be added to CardValidator, 

Map<String,Object> fieldsMap = new HashMap<String,Object>(); 

fieldsMap.put(fullKey + "id",cardDTO.getId()); 

fieldsMap.put(fullKey + "cvv",cardDTO.getCvv()); 

fieldsMap.put(fullKey + "active",cardDTO.isActive()); 

 

d. If some DTO have other DTO in its attribute, then to validate attribute level DTO, 
corresponding DTOs validator should be called. 

For e.g. CardDTO contains a field cardProductDTO of type CardProductDTO. So 
CardValidator should have following snippet to validate field of type CardProductDTO. 

 

if(cardDTO.getCardProductDTO() != null) { 

  
DTOValidatorFactory.getInstance().getValidator(cardDTO.getCardProductDTO()).validat
eInput(cardDTO.getCardProductDTO(), fullKey + "cardProductDTO", parent, 
validationErrors); 

} 

fieldsMap.put(fullKey + "cardProductDTO",cardDTO.getCardProductDTO()); 

 

e. If some DTO contains list of objects, include following snippet for its validation. 

if(cardDTO.getOffers() != null && !cardDTO.getOffers().isEmpty()) { 

      int dtoVarIndex = 0; 

      for(OfferDTO dtoVar : cardDTO.getOffers()) { 

        DTOValidatorFactory.getInstance().getValidator(dtoVar).validateInput(dtoVar, 
fullKey + "offers#" + dtoVarIndex, parent, validationErrors); 

        dtoVarIndex++; 

      } 

    } 

fieldsMap.put(fullKey + "offers",cardDTO.getOffers()); 

 

f. Finally add following method to validate parameters. 



Manual to create Validators 

 

Taxonomy Configuration Guide  
 

30 

 

DefaultDTOValidator.validateParams(fieldsMap,parent,validationErrors
); 

 
  



Glossary 

 

Taxonomy Configuration Guide  
 

31 

 

17. Glossary 

 

Validatable  Class com.ofss.fc.app.dto.validation.Validatable 

xface Project – 
‘core\middleware\projects\common\com.ofss.digx.app.xface’ 

appcore/dto Project – 
‘core\middleware\projects\framework\com.ofss.digx.appcore.dto’  

ValidationError 
Class 

com.ofss.fc.infra.validation.error.ValidationError 

 


